UNSTEADY-STATE THERMAL SELF-FOCUSING OF PULSES
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In absorbing media, one of the principal mechanisms for theappearanceof self-focusing can be heating
of the medium by radiation, leading to a change in the dielectric constant of the substance e. Since the greatest
change in the temperature takes place in the region of a maximal dose of radiation, i.e., in the central region
of the laser beam (or pulse), for de /dT > 0 there is the possibility of the appearance of self-focusing [1].
Thermal self-focusing was first observed in sapphire and glasses [2]. Subsequent experiments showed that
thermal self-focusing is possible in a rather broad class of substances. Thus, the investigation of the develop-
ment of damages in media with the passage of laser radiation {2, 3] leads to the conclusion that many of the
experimental results can be explained only starting from the concept of thermal self-focusing. We note that the
latter is observed for a relatively small power of the radiation; the threshold is usually 10-100 W. The rela-
tive contribution of different mechanisms of nonlinearity (thermal, strictive, Kerr) is discussed, for example,
in [4]. The theory of steady-state thermal self-focusing has been rather well developed [5]. However, in a
broad range of powers and durations of the pulse of radiation, the steady-state approach is insufficient and 2
study must be made of the unsteady-state problem. This is discussed in the present article. Here the following
limitations of the general problem are postulated: 1) the absorption is assumed to be linear (as a rule, this
approximation is sufficient, since the prinecipal contribution to the absorption is that of single-photon pro-
cesses [2]); 2) the absorption is assumed to be relatively small (such that, in the length of the self-focusing
zg, the absorbed energy will be much less than the initial energy of the pulse}. The present article sets forth
the results of both an analytical consideration and a numerical modeling,

1. Basic Equations

We represcnt the dielectric permittivity in the form of the sum
£ ey e - ey,

where g, and &, are the real and imaginary parts of the constant (i.e., not depending on the field of the radia-
tion) component of &; e is a thermal correction, which depends on the change in the temperature and density
of the medium. In a linear approximation,

er - (0&10p)pBp = (DeIDTVST, (1.1)
P

where 6T and 6p are, respectively, the deviations of the temperature and the density from their equilibrium
values T, and g,. The relative contribution of each of the terms of (1.1) to e can be equal, depending on the
parameters of the medium and the pulse. Correspondingly, the characteristic times of the processes, for
which these terms are significant, differ, If the pulse is sufficiently short, then in a fime 7 (the length of the
pulse) the density of the medium cannot change appreciably, in distinction from the molecular polarizability,
described by the sccond term in (1.1). Then the term (3e /0p)T6p can be neglected. For long pulses, a change
in g, connected with a change in the density, can appear; since this change usually far exceeds the change in
the molecular polarizability, in (1.1) only the first term need be taken into consideration. Thus, it is expedient
to consider only the limiting cases:

er == (e/dp)rbp = ¢,80; (1.2)
7= (0e/OT),0T == g557. (1.3)

In the general case, the sign of de /dT may be different depending on the temperature, the length of a
wave of the lascr radiation, and other factors. For self-focusing it is required that de /dT > 0, which is ob-
served for many substances under ordinary conditions (different types of glasses, silicon, sapphire, and
others [1, 2, 53]). In principle, there is the possibility of the appearance of self-focusing, both with a direct
dependence of the dielectric permittivity on the temperature (1.3) and with temperature compression [6] (ex~
pansion) of the medium (1.2). A widely known example is as follows: Water at T < 4°C contracts with heating,
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and 3¢ /3p > 0, which gives de /dT > 0, For a cold plasma 8&/8p < 0; therefore, heating followed by scattering of
the plasma also leads to de /dT > 0.

We first consider the case where the mechanism of the change in the dielectric permittivity with the
temperature is temperature compression (or expansion) of the substance (1.2).

The equation for a slowly varying complex amplitude E(r, z, t) of the field of the laser radiation is ob-
tained from the Maxwell equations, as usual representing the intensity of the field & in the form
& = (UQ)(Eeiot+ikz L ce,).
Taking into consideration that E(r, z, t) changes only slightly in the distance of a wavelength 1/k and after a
time on the order of a period 1/ w, we obtain
2k [(1/vgg VEy- E,1+ ALE + (Bleg)(ieyt en)E = 0, (1.4)
where vgr = ¢/Ve,.

To (1.4) we add equations determining the change in the density 6p, limiting ourselves everywhere to
terms linear with respect to 6p and 6T [4]:

where p = p(p, S) is an equation of state connecting the pressure p, the density p, and the entropy S. Since

3 , 3
op = Fﬁ— S + '6'% 85,
from this we obtain

3*0p 2 A {32
— A §p = '\{78
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where cg is the speed of sound in the medium; A, = (1/r)(3/9r)[r(® /o1)].

We obtain an equation which is insufficient to close the system using the equation of the balance of the
thermal energy Q (without taking account of the thermal conductivity)

Po g T TEa

0 _ oV &|EI2
€

and the thermodynamic relationship T = 3Q/8S. Summing up, we have

Ve key g

as
Pelo 55 = 8a £
If the thermal conductivity is taken into consideration, we can obtain

a8 _ Ve ke 2
ot —xbLS = 8peTq &9 | T,

where y is the coefficient of thermal conductivity.

Combining the equations written, we have the system
Zik(J— E, - Ez) +AE+X (g, 1) E=0,
ver €

s = cVE_ ke
—E~XALS—'S;E-TE—0#IEI2, (1.5)

928p 2 _[ap
S ciA 6p = (ﬁ)pAiS!

In the derivation of (1.5), the second derivatives with respect to the longitudinal coordinate were every-
where neglected. It is essential to take them into consideration only for pulses for which the longitudinal di-
mension is comparable to the characteristic transverse dimension a. Assuming that « ~ 0.1-0.01 cm, we ob-
tain the result that neglect is not justified for pulses of length T ~ 10~''-107" sec or shorter.

In the case where thermal self-focusing is due to the term 6T de /8T, in analogous fashion we arrive at
the system
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)2 1. v kz . I o
2ik (_v; E, + E) T+ 8L E 4 (it + 8,87 E =0,

8T, — 14,7 = gt 1
We introduce the notation for the characteristic times: rg is the characteristic time of the hydrodynamic
scattering of the substance; T4 ~ a/cg and is generally 1077-107% sec; 7 is the time of the "departure” of heat
from the focusing region; 7 ~ 0.1 see; 71 is the time of the development of self-focusing, determined by the
parameters of the medium and the pulse. Depending on the relationships between these times, different sim~
plifications of system (1.5) or (1.6) are possible. We shall consider some limiting cases.

2. Adiabatic Self-Focusing

Let the length of a pulse and the time of self-focusing be much greater than the time of the hydrodynamic
scattering of the substance from the focal region. Then the process of self-focusing can be regarded as adi-
abatic. Substituting dpit = 0 from (1.5) into the wave equation, we arrive at the system

K2
€o

. 1 . R de
2ik( E TE)AL-A E B lig, + %25 )E:O,
l (l‘gr frTE T (wl TP @.1)
. Ve 9p key g
8p, — 1A 8p - SepoTo? 35 & [E]%
which, with an accuracy up to the definitions, coincides with (1.6).

Thus, in the above sense, the case et = §T8e /8T is equivalent to the limiting case eT =06p9e/3p. I the
quantities r, z, t, 6T, and E are measured in the units @, I, 2k%a%/ Vgr, &0/ k’a’e;, and (87Tp0Cp/k20253)1/2,
respectively, then, the system (1.6) assumes the form

Hug-nu,) + Au + (iv - oT)u = 0, 2.2)
Ty— A, T=2v{uf?,

where all the variables are dimensionless. Here v = k%a%,/ ¢y, n = 2ka%/ 1, p = 2xk/ocpvgr, and cp is the heat
capacity. The dimensionless coefficient ¢ is introduced for convenience in the numerical experiments. This
coefficient is introduced by the replacement t — gt, z = oz, r — Vor, v — vg or the replacement u —~ vou,
T—cT.

Let us write the equivalent transformations leading to the dimensionless form (2.2} of system (2.1).

If we assume that a ~ 0.1 cm and x ~ 0.1~1 cm?/ sec, then the thermal conductivity is obviously signifi-
cant only for pulses with a duration of v > 0.01 sec (this limit is made more precise below).

We first consider shorter pulses, i.e., we neglect the thermal conductivity and set p= 0. We go over to
the coordinates ¢, z',

t=84+1zm z=12
and introduce u = W exp (~vz /7).
We then arrive at the equations
NW, - v, WHeTW = 0, 2.3)
Ty= 2v|W P xp(—2vz/n).
Let ry be a quantity characterizing the transverse dimension of the beam. We shall seek the solution of
2.3) for r < ry, i.e., in the preaxial region, in the form
W = geiw, =1, (8 exp[—r¥/rif: (&, 9lif (& 2). @2.4)
p=0a(f2)+B(E 2)r2,

where §,(¢ is the envelope of the input pulse. The statement (2.4) assumes that the pulse in a transverse cross
section, if only near the axis, has a Gaussian form, which does not follow from the starting equations, The
following general statement would be more natural:

% ® r \
Y=T7e 5 V(rnf(Ey 5
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flowing out of the fact that the first of Egs. (2.3) has the integral of the motion
I={|Wprdr.

However, (2.4) reproduces quantitatively the general character of the solution, and we shall start from this
representation, From (2.3) it follows that 3 and ¢ satisfy the equations

2 2 9 00\
n¥: 757(“*”;,7)'01

7](Pz+\;—A_L¢ ¢t —oT =0,
&
T = 2v | ¢ exp(— 2va/n) dE.
0

We substitute here the expressions {2.4) and make use of the fact that we are considering the preaxial
region, i.e., we expand the expressions obtained in powers of (r/ ro)2 and limit ourselves to the first terms
of the expansion. Then, equating to zero the coefficients with first powers of (r/ ry?, we arrive at the equa-
tions for f and 8:

3
f 4 4ov (* ¢E (y) exp (— 2vz/y
= of, mroE___t b (y) exp A - .
B=nf./2f, T 3 e E R dy = 0. 2.5

For the appearance of self-focusing, it is required that in the second of these equations the last term,
assuring the constriction of the pulse to the axis, exceed the second term, connected with diffraction spread~
ing. Assuming a sufficiently smooth form of ), we obtain from this the condition for the appearance of self-
focusing:

ovJ Eexp(—2vzim)> 1, 2.6)

where J = pird; §3 is the mean value of g

Thus, J has the sense of the power of the pulse. Since we are considering the case of weak absorption,
we neglect the exponent in (2.6) and arrive at the orientation of self-focusing in the form

I> Ier= 1/ov, 2.7)

where I = J7 is the energy of a pulse. Of course, due to the large number of approximations and extrapolations,
the criterion (2.7) has a rough character. Numerical experiments have shown that we require an additional
coefficient of the excess in (2.7) on the order of 3-5, depending on the form of the initial pulse.

As is well known, in the theory of steady-state self-focusing, the critical quantity, determining the pos-
sibility of the appearance of self-focusing, is the power of the beam. As can be seen, in the unsteady-state
theory, an analogous role is played by the energy of a pulse.

Let us consider Eq. (2.5) in more detail. If f depends only weakly on z, then the term n%f55/ £ can be
neglected. Now, setting f(£ = 0) = 1, we obtain

f(§) =exp (_%@S ¥ (v) dy) = exp(— I (§)/4ler), 2.8
0 /

£

where I (&) = r§ \ ¥3(y)dy has the sense of the energy passing through a cross section with the longitudinal co-
2

ordinate £.

The second of Egs. (2.5) has the form of the equation of motion of a nonlinear oscillator under the action
of two "forces™ of different sign, i.e., diffraction and a nonlinear force. For small values of £, i.e., at the
limiting front of the pulse, where the nonlinear term is small, there will be ordinary differential spreading.
The same region of ¢ where the condition I{¢) > Iy is satisfied is embraced by self-focusing conditions. In this
region, there is the possibility of the appearance of oscillations of f around the equilibrium position, deter-
mined from (2.8). '

Let us evaluate the dimension of the oscillations. Setting f = £, + 6f, where f; is the equilibrium position,
and assuming that 6f < 1 and 6f ~ exp (iz/A), we obtain from (2.5)
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whence, for f; =1,
1 ;
A~ 5 f‘%nr%.

From relationship (2.8) we have a simple evaluation for the minimal amplitude and the minimal trans-
verse dimension of the pulse:

Umax~ Poexp{lidler), Tmin~ reexp(—{/4lcr). 2.9
Thus, the ratio I/ Isy mainly determines the dynamics of thermal self-focusing.

Oscillations of f and, consequently, of the amplitude and the radius of a pulse, arigse for the condition

A<, s fi<,

i.e., for sufficiently small values of f and I,/ 1. Up to this moment, the pulse will be focused as a whole.
Setting f; ~ exp (1 /4l¢r), we obtain an evaluation for the minimal dimension of the oscillations:

Amin ~ nrgexp (— I/2Icr).

As can be seen from (2.8), for I » Iy, inthe process of self-focusing the pulse is noticeably constricted
to the axis, and the thermal conductivity must then be taken into consideration, even for short pulses. From
(2.9} it follows that the thermal conductivity is significant with the propagation of pulses of a length

= rfnm/u = rf exp {(— 1)21 ).

Under real conditions, the condition I » I,y is easily satisfied. We note that evaluations analogous to
those given above are valid also for the propagation of powerful pulses in a medium with inertial Kerr non-
linearity, since the basic equation in this case has the form (2.2) for u = 0, and the role of v is played by a
quantity inverse to the relaxation time of the nonlinearity [7].

The system (1.6) was investigated numerically. The discussion was carried through in natural Euler
variables in the following statement: A pulse of radiation of Gaussian profile

u(r,z=20,1 = Adexp (— riri — 1218 (2.10)

falls on the boundary of the medium z = 0 and, being absorbed in the medium with z > 0, is focused. The initial
temperature is taken equal to zero, and the initial field has the form

u(r, z, t = 0) = 0, exp (— r¥r§ — s%/12q%). 2.11)

The initial moment of time t = 0 is so selected that the initial and boundary conditions (2.10) and (2.11) will be
consistent,

The results of numerical modeling confirm sufficiently well the evaluations made above for the dynamics
of the evolution of a pulse,

Self-focusing has a threshold with respect to the energy of a pulse. The value of the threshold is in
agreement with the evaluation 2.7). If the ratio 1/ Ier has a value of 1-3, then, after attaining a maximum of
the amplitude, the pulse spreads out rapidly. If the condition I > Iy is satisfied with a margin of 3-5 times
or more, this spreading takes place very slowly, so that it is possible to speak of stabilization of the pulse.
The level of stabilization is close to that predicted by the relationship (2.9).

The dependence of the value of umgx = max | ul on the absorption coefficient v for fixed parameters of
the medium and the pulse A =1, r,=3, 7 =2, ¢ =80, and 7 = 0.5 is given in Fig. 1.
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After the maximal amplitude has attained a certain value, characteristic oscillations develop in the rear
part of the pulse. Thus, for the parameters of Fig. 1, oscillations arise starting with an amplitude of ~3.

Figure 2 gives the level lines |ul = 0.3, 0.5, 0.7, 1, 1.5, 2, and 3 for a pulse at successive moments of
time t with v = 0.014. '

Since, in dimensional variables, the longitudinal dimension of the amplitude is much greater than the
transverse, we can speak of a tendency toward the breaking-up of the pulse into individual bunches ("multi-
focus structure® [8]). The evolution of each such pulse takes place according to the following scheme: The
focus is split by constriction into two parts; the leading part moves forward along the pulse, while the rear
part moves in the opposite direction (focuses A and B, Fig. 3, v = 0.014). The focus moving ahead undergoes
the same evolution as the initial focus. In the developed stage of the process, oscillations of approximately
identical amplitude are formed on the profile of the pulse (see Fig. 3). At the leading front, new maxima are
formed continuously, running backward along the profile of the pulse and vanishing in the tail part.

With an increase in the energy of the pulse I, the dimensions of oscillations decrease, their number
increases. This circumstance constitutes an obstacle to the attainment of large values of upyax. With small
values of I ~1 — 3Ioy, after atfaining a maximal amplitude, the pulse spreads out without the formation of os-
cillations.

To demonstrate convincingly that it is precisely the energy of the pulse which mainiy determines the
dynamics of the process of self-focusing, the parameters ry, ¢, and v were varied over a wide range, but in
such a way that the value of the ratio I/ Ioy would not change. It was found that, with an accuracy of ~5%, the
maximally attainable amplitude of the pulse under these circumstances does not change. The length of the self-
focusing rises considerably with a rise in the transverse dimension of the initial pulse.

Oscillations of the temperature were observed in the calculation, but they were not great.

The system (1.6) was considered numerically and for u = 0, i.e., taking account of thermal conductivity.
The effect of the thermal conductivity rises with a rise in the energy of the pulse. Figure 4 gives axial pro-
files of the temperature for different values of the parameters g andp for t =8 [ o =4, p =0; 2) ¢ =~1,
p=0;3)o0=4,p=0;v=0,014].

We note that oscillations of the field also arise with strictive and Kerr mechanisms of the self-focusing
of the pulses [7].

3. Supersonic Self-Focusing

If the development time of self-focusing 7 is less than the time of the hydrodynamic scattering of the
substance g (or is comparable with it), it is necessary to consider the total problem, i.e., the system (1,5),
In the limiting case 7f <7g (supersonic self-focusing), inthe last of these equations the term céA 10p can be
dropped.

In dimensionless variables, system (1.5) assumes the form

(g M) - Ay = (v + op)u == 0, | 6.1
Prr — BAp = A S, S;= 2vi|ul?,
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where u is the amplitude of a pulse; p and S are, respectively, the perturbations of the density and the entropy;
v = Kla%, /ey p = 4cikia?/ vér; n = 2ka®/1. The values of r, z, t, u, p, and S are measured in the units a, 7,
2ka®/ vgr, @mpyToc!/ e4eka’dp /88) 12, &0/ Kla¥e,, c¥/(4kia’e,dp/38), respectively. The factors o and » are
introduced, as before, for convenience in calculations by the replacement u — (w2, p— gp, S — oS.

Let us consider the case u =0. For sufficiently long pulses (or bunches), it can be assumed that 7 = 0.
Then (3.1) admits of an approximate self-similar statement:

S S
(to — t)3/2

) 1 ,
p =G ROMG = 199, S = g Qrilty — 12),

V(rity — ty%72),

which can be demonstrated directly. It can be seen that, for long pulses, after a finite time t;, a singularity
(collapse) arises in the solution.

For the investigation of the self-focusing of pulses of finite length, we go over to "accompanying" co-
ordinates t = £ ~z /7 and z = 2'; we introduce u = Wexp (—vz /1), after which we shall seek the solution in the
form (2.4).

In the region r « ry, for f we then obtain the equation

g
nef 4 -
2z ovx 5 dy

x n , ,
T & de | Yole)d (3.2)
! ftrg o 0 o

From (3.2) it follows that self-focusing is possible if the last term in this equation exceeds the diffraction
term 4/f'r}. From this the condition for self-focusing has the form

72 < ovait,
where 2 and §§ are the corresponding averaged values.
Since f(£ = 0) = 1, then the criterion for self-focusing can be written in the form
I>Igr = riitiovx, (3.3)
where I = yrir has the sense of the energy of a pulse.

The profile of the pulse enters explicitly into the evaluation (3.3), since r,/7 is the ratio of the charac-
teristic transverse and longitudinal dimensions.

Equation {3.2) is the equation of motion of a linear oscillator. Its "equilibrium point" {; is determined by
the condition fzz = 0, i.e.,

(1')zzz = Bovagi(E)/f° (3.4)
In the simplest case of a pulse of rectangnlar form

. {fq = const, O0<CE<T,
Yy (8) = | - -
L0, E<<0. 5>
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G
o)



jul

° o “Ip
o :
i . z t=4,8
3 o=
H - Y
o t=5,3 =55 />

!

0 1 2z LI
Fig. 6 , Fig. 7 Fig. 8

&nr

we can find the explicit solution of Eq. (3.4):
f = Dolovn/56)1/2(Eg— E)%/2

{compare with the self-similar solution for long pulses). It follows from this that the change in the amplitude
and transverse cross section of a pulse should have an explosive character as £ —§;, i.e., with an approach
to the tail part of the pulse. The quantity £ has the sense of the coordinate of collapse. The extremal values
of the amplitude and radius of a pulse of length 7 can be evaluated in the following manner:

[#lmax~ Po/(Bo— T*, rmja~ ro{8o— T)%2,

Let us evaluate the characteristic dimension of the oscillations of the value of f. Setting f ~ f; + 6f, and
assuming that 6f « 1, 6f ~ exp (iz/ M), from (3.2) for £ ~ & we obtain

i.e., the minimal dimension of the oscillations
1
Ain ~ EE] (EU/T — 1)3'}'%’/10!-
For pulses of nonrectangular form, the qualitative picture, i.e., the explosive character of the self-
focusing, should be retained.

Ifp = 0, it is essential to take account of the hydrodynamic scattering. As follows from the self-similar
solution, as ¢ — ¢, the term uA) p rises as (¢, — £)~¢, while, at the same time, pt ~ (5 — £)78,

We give the results of a numerical investigation of system (3.2). Pulses of Gaussian form were con-
sidered:

u(r, 2=0, )= Aexp(—r¥/r§ — £222),
falling on the boundary z = 0 with the initial conditions
ofr, z, t = 0) = pylr, 2, t = 0) = 8(r, z, £ = 0) = 0,
u(r, z,t = 0) = 0,1 exp (— r2/r§ — z%/12n?2).
The time is reckoned from the moment when the initial and boundary conditions are in agreement,

The behavior of long pulses T = = is close to the predicted self-similar law, as can be seen from Fig. 5.
Self-similar conditions are naturally attained in a time much less than the absorption time of a pulse 1/ v,
i.e., forovn >1.

With the consideration of the total system for finite pulses, the parameter ¢ was varied. With small
values of ¢, the amplitude, after attaining a maximum, decreases and the pulse spreads out. With a rise in
o, oscillations appear in the tail part of the pulse. With sufficiently large values of ¢, in the developed stage
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of sclf-focusing, the pulse is, so to speak, divided into two parts: a tail part, with a strongly oscillating am-
plitude of the intensity of the field, and a leading part, with weak oscillations. The dimension of the oscillations
decreases sharply with an approach to the tail part of the pulse, as can be seen in Fig, 6, which shows the
field at the axis of the pulse at different moments of time.

With a rise in g, i.e., with a decrease in the development time of self-focusing, the geometric dimen-
sions of the oscillations decrease sharply, which is a consequence of the explosive character of the process.

Figure 7 gives the distributions of the density at the axis of a pulse at two moments of time. The results
shown in Figs. 6 and 7 were obtained with the parameters A=1, r=2, r;=3, ¢ =50, v =0.01, »=2, and
n = 0.5.

A sharp rise in the maximally attainable amplitude starts from ¢ = 50. The strongly oscillating part of
the pulse moves weakly ahead; there is a capture of the field by the well of the density, which has a strongly
oscillating profile. The oscillations in the profile of S are weakly expressed. In Fig, 8, which gives the spatial
distribution of the field with these same parameters at the moment t = 4.8, there can also be clearly seen the
separation of the pulse into parts with strong and weak oscillations. The lines in Fig. 8 correspond to the
levels 'ul = 0.1, 0.3, 0.5, 0.7, 1, 1.5, and 2.
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