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In absorbing media,  one of the principal  mechanisms for  the appearance  of se l f - focusing can be heating 
of the medium by radiation,  leading to a change in the dielectr ic  constant of the substance e. Since the grea tes t  
change in the t empera tu re  takes place in the region of a maximal dose of radiation, i.e., in the central  region 
of the laser  beam (or pulse), for d e / d T  > 0 there  is the possibil i ty of the appearance of self-focusing [1]. 
Thermal  se l f - focusing was f i rs t  observed in sapphire and glasses  [2]. Subsequent experiments  showed that 
thermal  se l f - focusing is possible in a ra ther  broad class  of substances.  Thus, the investigation of the develop- 
ment of damages in media with the passage of l a se r  radiation [2, 3] leads to the conclusion that many of the 
experimental  resul ts  can be explained only s tar t ing f rom the concept of thermal  self-focusing.  We note that the 
lat ter  is observed for a relat ively smal l  power of the radiation; the threshold is usually 10-100 W. The r e l a -  
tive contribution of different mechanisms of nonlinearity (thermal, s t r ic t ive,  Kerr) is discussed,  for example, 
in [4]. The theory of s teady-s ta te  thermal  se l f - focusing has been ra ther  well developed [5]. However, in a 
broad range of powers and durations of the pulse of radiation, the s teady-s ta te  approach is insufficient and a 
study must be made of the unsteady-state problem. This is discussed in the present article. Here the following 
limitations of the general problem are postulated: i) the absorption is assumed to be linear (as a rule, this 
approximation is sufficient, since the principal contribution to the absorption is that of single-photon pro- 
cesses [2]); 2) the absorption is assumed to he relatively small (such that, in the length of the self-focusing 
zf, the absorbed energy will be much less than the initial energy of the pulse). The present article sets forth 
the results of both an analytical consideration and a numerical modeling. 

1. B a s i c  E q u a t i o n s  

We represen t  the dielectr ic  permit t ivi ty  in the form of the sum 

"~' : ~ " )  - i ~ ' I  -- ~ " T ,  

where a 0 and a I a re  the real and imaginary par ts  of the constant (i.e., not depending on the field of the rad ia -  
tion) component of e; aT is a thermal  cor rec t ion ,  which depends on the change in the tempera ture  and density 
of the medium. In a l inear approximation, 

~'r - ( c )~ lOp) , rSp  - (0s  F)r 7', (1.1) 

where 5T and 60 are ,  respect ively ,  the deviations of the t empera tu re  and the density f rom their  equilibrium 
values T O and o 0. The relat ive contribution of each of the t e rms  of (1.1) to a T can be equal, depending on the 
pa ramete r s  of the medium and the pulse. Correspondingly,  the charac te r i s t i c  t imes of the p rocesses ,  for 
which these t e rms  a re  significant, differ. If the pulse is sufficiently short ,  then in a t ime r (the length of the 
pulse) the density of the medium cannot change appreciably,  in distinction f rom the moIeeular  polarizabil i ty,  
descr ibed by the second t e r m  in (1.1). Then the t e r m  (ae/~)O)TSp can be neglected. For  long pulses,  a change 
in a, connected with a change in the density,  can appear; since this change usually far  exceeds the change in 
the moleeular  polarizabil i ty,  in (1.1) only the f i rs t  t e r m  need be taken into consideration. Thus, it is expedient 
to consider  only the limiting eases:  

e~ .... ( a e / a p ) r 6 p  ~ e~6p; (1.2) 

e T =  (0e/01")o6"_l" == ea6T. (1.3) 

In the general  case ,  the sign of d e / d T  may be different depending on the tempera ture ,  the length of a 
wave of the l ase r  radiation, and other factors .  For  self-focusing it is required that d e / d T  > 0, which is ob- 
served for many substances under ordinary conditions (different types of g lasses ,  silicon, sapphire,  and 
others [1, 2, 5]). In principle,  there  is the possibil i ty of the appearance of self-focusing,  both with a di rect  
dependence of the dielectr ic  permit t ivi ty  on the t empera tu re  (1.3) and with tempera ture  compress ion  [6] (ex- 
pansion) of the medium (1.2). A widely known example is as follows: Water at T < 4~ contracts  with heating, 
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and 0 e/Op > 0, which gives d e / d T  > 0. Fo r  a cold p lasma 8~/8p < 0; therefore ,  heating followed by scat ter ing of 
the p lasma also leads to d e / d T  > 0. 

We f i rs t  consider  the case  where  the mechanism of the change in the dielectr ic  permit t ivi ty  with the 
t empera tu re  is t empera tu re  compress ion  (or expansion) of the substance (1.2). 

The equation for a slowly varying complex amplitude E(r,  z, t) of the field of the laser  radiation is ob- 
tained f rom the Maxwell equations, as usual represent ing  the intensity of the field $ in the form 

= (ll2)(EeUot+~k z + c.c.). 

Taking into considerat ion that E(r,  z, t) changes only slightly in the distance of a wavelength 1 / k  and after a 
t ime on the o rder  of a period 1 / :0, we obtain 

2ik[(tlvgr )El+ E~I + A=E + (k"-le0)(is~-" er)E = 0, (1.4) 

where  Vgr = c/V~0. 

To (1.4) we add equations determining the change in the density SO, limiting ourselves  everywhere to 
t e rms  l inear with respec t  to dO and 5T [4]: 

where  p = p(p, S) is an equation of state 

06910~ + 9oV:~ = 0, 

pogvlOt = --V,6p, 

connecting the p re s su re  p, the density p, and the entropy S. Since 

Op Op 6p = -N-6p +-g~ 5S, 

f rom this we obtain 

- -  ~ , , 5  ~ 6 p  . . . .  A :  S .  Ot~ "" - i OS.~ - 

where es is the speed of sound in the medium; A• = (1 / r) (0 /a r ) [ r  (0/Or)]. 

We obtain an equation which is insufficient to close the sys t em using the equation of the balance of the 
thermal  energy Q (without taking account of the thermal  conductivity) 

aO ~1/~ k~, IEI~ P0-~ = 8a e0 

and the thermodynamic  relat ionship T = 8Q/~S. Summing up, we have 

os  m l el Po T0~ / -=  8a to 

If the thermal  conductivity is taken into considerat ion,  we can obtain 

o s _ x A ~ S _ _  ~V~ ke, lE1 ~, 
o--7 - g~-~-;, ~0 

where X is the coefficient of thermal  conductivity. 

Combining the equations writ ten,  we have the sys t em 

k~ 

os x A , S  e'V-Go ke, IEI=, (1.5) 
Ot 8apoTo eo 

O~6P C2I~I~)O:( Op ) 
otz ~ "  o h z S" 

In the der ivat ion of (1.5), the second derivat ives  with respec t  to the longitudinal coordinate were  every-  
where neglected. It is essential  to take them into considerat ion only for pulses for which the longitudinal di-  
mension is comparable  to the charac te r i s t i c  t r ansve r se  dimension a. Assuming that a ~ 0.1-0.01 era, we ob- 
tain the resul t  that  neglect  is not justified for pulses of length r ~ 10-11-10 -12 see or shor ter .  

In the case  where  thermal  seIf- focusing is due to the t e r m  5T 0e lOT ,  in analogous fashion we a r r ive  at 

the sy s t em 
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2ik(v~ E t ~  EO+ k, = A• + -~o (ie~ + %67") E O, 

6T t - -Xa ,6r - -  cg~ k~ i ] E l  ~. 
- 8npocp e0 

(L6) 

We in t roduce  the nota t ion  for  the  c h a r a c t e r i s t i c  t i m e s :  r s is the  c h a r a c t e r i s t i c  t ime  of  the hyd rodynamic  
s c a t t e r i n g  of  the  subs t ance ;  Zs ~ a/Cs and is g e n e r a l l y  10-7-10 -8 see ;  ~T is the t i m e  of  the " d e p a r t u r e "  of  heat  
f r o m  the focus ing  region;  TT ~ 0.1 sec ;  Tf is the t i m e  of  the d e v e l o p m e n t  of  s e I f - foeus ing ,  d e t e r m i n e d  by the 
p a r a m e t e r s  of the m e d i u m  and the  pulse .  Depending on the r e Ia t ionsh ips  be tween t h e s e  t i m e s ,  d i f fe ren t  s i m -  
p l i f ica t ions  of s y s t e m  (1.5) o r  (1.6) a r e  poss ib le .  We shal l  c o n s i d e r  s o m e  l imi t ing  c a s e s .  

2 .  A d i a b a t i c  S e l f - F o c u s i n g  

Let  the length of  a pu l se  and the t i m e  of  s e l f - f o c u s i n g  be much  g r e a t e r  than the  t i m e  of  the hyd ro d y n a mic  
s c a t t e r i n g  of the  s u b s t a n c e  f r o m  the  focal  region.  Then  the  p r o c e s s  of s e l f - f o c u s i n g  can  be r e g a r d e d  as adi -  
abatic .  Subst i tut ing 5Ptt = 0 f r o m  (1.5) into the wave  equation,  we  a r r i v e  at the s y s t e m  

2ik , Et+ Ez)-i A=E-i--~o iel ~--~-~ 9 E = 0 ,  

Y ~  op k~ 
6p, - zA  6o s.,$o- 04 os I El'-, 

(2.1) 

which,  wi th  an a c c u r a c y  up to the def in i t ions ,  co inc ides  with (1.6). 

Thus ,  in the above s e n s e ,  the c a s e  aT = 5 T 0 e / 0 T  is equivalent  to the l imi t ing  e a s e  aT = 5pOe/Op. If the  
quant i t ies  r ,  z, t,  ST, and E a r e  m e a s u r e d  in the units  a,  l, 2k2a2/Vgr,  eo/k2a2e3, and (SnPocp/k2a2e3) I/2, 
r e s p e c t i v e l y ,  then,  the s y s t e m  (1.6) a s s u m e s  the f o r m  

i(ttt-!- I]Uz) ~- A~.lt @ (iV ~- O'T)u = 0, (2.2) 
Tt-- ~thj_T=2vjul z, 

w h e r e  all the va r i ab l e s  a r e  d i m e ns i on l e s s .  H e r e  v = k2a2at /ao ,  ~? = 2ka2 / l ,  ~ = 2xk/PoepVgr, and ep is the heat  
capacity. The dimensionless coefficient ~ is introduced for convenience in the numerical experiments. This 

coefficient is introduced by the replacement t-- ~t, z ~ ~z, r ~ ~'~r, v -* v~ or the replacement u ~ f~u, 

T ~T. 

Let us write the equivalent transformations leading to the dimensionless form (2.2) of system (2.1). 

If we assume that a ~ 0.1 cm and X ~ 0. i-i cm2/see, then the thermal conductivity is obviously signifi- 

cant only for pulses with a duration of r > 0.01 see (this limit is made more precise below). 

We first consider shorter pulses, 

the coordinates (, z', 

and in t roduce  u = W e x p  ( - v z / v ) .  

We then a r r i v e  at  the equat ions  

i .e . ,  we neglec t  the t h e r m a l  conduct iv i ty  and se t  p = 0. We go over  to 

t = ~ + z / q ,  z = z '  

itlWz 4- v•  = 0, (2.3) 
Tr 2vlWl"-exp(--2vz/q). 

Let  r 0 be a quant i ty  c h a r a c t e r i z i n g  the t r a n s v e r s e  d i m e n s i o n  of  the  beam.  We shal l  s eek  the solut ion of 
{2.3) fo r  r < r0, i .e . ,  in the p reax ia l  r eg ion ,  in the f o r m  

W = ~e ie, ~ =~o (~) exp [ - -  r'/r2f ~ (~, z)]//(g, z), (2.4) 
r = cz(~,z) + [3 (~, z) r~/2, 

w h e r e  r is the envelope of the input pulse.  The  s t a t e m e n t  (2.4) a s s u m e s  that  the  pu l se  in a t r a n s v e r s e  c r o s s  
sec t ion ,  if  only near  the axis ,  has  a Gauss i an  fo rm,  which  does  not follow f r o m  the s t a r t i n g  equat ions.  The 
fol lowing genera l  s t a t e m e n t  would be m o r e  na tura l :  

t ( - g 7 7 i - ,  - 
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flowing out of the fact  that  the f i r s t  of Eqs. (2.3) has the in tegra l  of the motion 

I = ~] W I"rdr. 

However ,  (2.4) r ep roduces  quant i ta t ively the gene ra l  c h a r a c t e r  of the  solution, and we shall  s t a r t  f r o m  this 
r ep resen ta t ion .  F r o m  (2.3) it follows that  ~b and r sa t i s fy  the equations 

2 o /  ~ 0 ~ ) = 0  ' 

t ~ + ~-- A ~  + ~ - -  o/" = O, 

T = 2v .( ~ exp (--  2vz/Ti) d~. 
0 

We subst i tu te  h e r e  the exp res s ions  (2.4) and make  use  of the fact  that  we  a r e  consider ing the p reax ia l  
region,  i .e . ,  we expand the express ions  obtained in powers  of ( r / r 0 )  2 and l imi t  ou r se lves  to the f i r s t  t e r m s  
of the expansion. Then,  equating to ze ro  the coeff icients  with f i r s t  powers  of ( r / r 0  )2, we a r r i v e  at the equa-  
t ions for  f and fl: 

Izz 4 4av ~i ~z (y) exp (-- 2vz/q) dy = O. (2.5) 
= ~i~z/2f, ,1 ~ ~ rT' + ~ /'(y, ~) 

For  the appea rance  of se l f - focus ing ,  it is r equ i red  that  in the second of these  equations the l as t  t e r m ,  
a s su r ing  the cons t r i c t ion  of the pulse  to the ax is ,  exceed the second t e r m ,  connected with d i f f rac t ion  s p r e a d -  
ing. Assuming  a suff icient ly smooth  f o r m  of r we obtain f r o m  this the condition for  the appearance  of s e l f -  
focusing: 

avJ~exp(--2vz/q):> i, (2.6) 

- 2  2 where  J = $0r0; ~ is the mean  value of ~o 2. 

Thus,  J has the s ense  of the power  of the pulse.  Since we a r e  consider ing the case  of weak absorpt ion,  
we neglect  the exponent in (2.6) and a r r i v e  at the or ien ta t ion  of se l f - focus ing  in the f o r m  

I ~  / c r=  i/av, (2.7) 

where  I = J~ is the energy  of a pulse.  Of cou r se ,  due to the l a rge  number  of approximat ions  and extrapola t ions ,  
the c r i t e r i o n  (2.7) has a rough c h a r a c t e r .  Numer ica l  expe r imen t s  have shown that  we r equ i r e  an additional 
coeff ic ient  of the excess  in (2.7) on the o r d e r  of 3-5,  depending on the f o r m  of the initial  pulse.  

As is wel l  known, in the theory  of s t e a d y - s t a t e  se l f - focus ing ,  the c r i t i c a l  quanti ty,  de te rmin ing  the pos -  
s ibi l i ty  of  the a p p e a r a n c e  of se l f - focus ing ,  is the power  of the beam.  As can be seen,  in the uns teady-s t a t e  
theory ,  an analogous ro le  is played by the energy  of a pulse.  

Let  us cons ider  Eq. (2.5) in m o r e  detail .  If  f depends only weakly  on z, then the t e r m  ~2fzz / f can be 
neglected.  Now, se t t ing  f(~ = O) = 1, we  obtain 

whe re  I(~) ----- rZ0 .I" ~'~ (Y)dy 
0 

ordinate  ~. 

( awo 2 ~ ) 

0 

(2.8) 

has the sense  of the energy  pass ing  through a c ross  sec t ion  with the longitudinal co-  

The second of Eqs. (2.5) has the f o r m  of the equation of motion of a nonlinear osc i l l a to r  under the action 
of two " f o r c e s "  of d i f ferent  sign, i .e . ,  d i f f rac t ion  and a nonlinear  force .  Fo r  sma l l  values  of ~, i .e . ,  at the 
l imi t ing  front  of the pulse ,  where  the nonlinear  t e r m  is sma l l ,  t he r e  will be o rd ina ry  di f ferent ia l  spreading.  
The s a m e  reg ion  of ~ where  the condition I(~) > Ic r  is sa t i s f ied  is embraced  by se l f - focus ing  conditions. In this 
reg ion ,  t he r e  is the poss ib i l i ty  of the appearance  of osci l la t ions  of f around the equi l ibr ium posit ion,  d e t e r -  
mined f r o m  (2.8). 

Let  us evaluate  the d imens ion  of the osci l la t ions .  Setting f = f0 + 5f, where  f0 is the equi l ibr ium posit ion,  
and a s suming  that  6f << 1 and 5f ~ exp ( i z / M ,  we obtain f r o m  (2.5) 
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whence, for fo - 1, 

,I, N_ 16 ( 5:, J- 

i I ~ .  

F r o m  relat ionship (2.8) we have a simple evaluation for the minimal amplitude and the minimal t r a n s -  
ve rse  dimension of the pulse: 

Umax N ~oexp( I /4 lcr ) ,  rmi~"-" roexp(- - I ,  4fcr).  (2.9) 

Thus, the rat io I / I c r  mainly determines  the dynamics of thermal  self-focusing.  

Oscillations of f and, consequently,  of the amplitude and the radius of a pulse, a r i se  for the condition 

i . 9  2 

i .e. ,  for sufficiently smal l  values of f and I e r / I .  Up to this moment,  the pulse will be focused as a whole. 
Setting f0 ~ exp ( - I / 4 I c r ) ,  we obtain an evaluation for the minimal dimension of the oscil lat ions:  

~,rain ~ "qr~ exp (-- I /2Icr) .  

As can be seen f rom (2.8), for I >> Icr ,  in the process  of se l f - focusing the pulse is noticeably constr ic ted 
to the axis, and the thermal  conductivity must  then be taken into considerat ion,  even for shor t  pulses. F r o m  
(2.9) it follows that the thermal  conductivity is significant with the propagat ion of pulses of a length 

~ r~,./~ = r 2 exp (-- I]2Icr)!~,. 

Under rea l  conditions, the condition I >> Icr  is easi ly satisfied. We note that evaluations analogous to 
those given above are  valid also for the propagation of powerful pulses in a medium with inertial Ker r  non- 
l ineari ty,  since the basic  equation in this case  has the fo rm (2.2) for # = 0, and the role  of u is played by a 
quantity inverse  to the relaxat ion t ime of the nonlinearity [7]. 

The sy s t em (1.6) was investigated numerical ly.  The discuss ion was ca r r i ed  through in natural  Euler  
var iables  in the following statement:  A pulse of radiation of Gaussian profi le 

u (r, z : 0, t) = A exp (--  r~/r2o - -  t~-,~2t (2.10) 

falls on the boundary of the medium z = 0 and, being absorbed in the medium with z > 0, is focused. The initial 
t empera tu re  is taken equal to zero,  and the initial field has the fo rm 

: 2 9 - ' ~ '  2 a u (r, z, t = 0) 0, I exp ( - -  r / r 6  - -  ~'/~ q ' ) .  (2.11) 

The initial moment  of t ime t : 0 is so selected that the initial and boundary conditions (2.10) and (2.11) will be 
cons istent. 

The resul ts  of numerical  modeling confi rm sufficiently well the evaluations made above for the dynamics 
of the evolution of a pulse. 

Self-focusing has a threshold with r e spec t  to the energy of a pulse. The value of the threshold is in 
agreement  with the evaluation (2.7). If the ra t io  I / I c r  has a value of 1-3, then, after attaining a maximum of 
the amplitude, the pulse spreads  out rapidly. If the condition I > Ic r  is sat isfied with a marg in  of 3-5 t imes 
or more ,  this spreading takes place very  slowly, so that it is possible to speak of stabil ization of the pu!se. 
The level of stabil ization is close to that predicted by the relat ionship (2.9). 

The dependence of the value of Urea x = max [u [ on the absorpt ion coefficient , for fixed pa rame te r s  of 
the medium and the pulse A = 1, r 0 :: 3, z = 2, cr = 80, and ~? = 0.5 is given in Fig. 1. 

2 ] l,n urea• .J .. / 
O ~ "~'102 
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Fig. 1 
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Fig. 2 

After  the maximal  amplitude has attained a cer ta in  value, cha rac te r i s t i c  oscil lat ions develop in the r ea r  
par t  of the pulse. Thus, for  the pa r ame te r s  of Fig. 1, oscil lat ions a r i se  s tar t ing  with an amplitude of ~3. 

Figure  2 gives the level lines I u I = 0.3, 0.5, 0.7, 1, 1.5, 2, and 3 for a pulse at success ive  moments of 
t ime t with v = 0.014. 

Since, in dimensional  var iables ,  the longitudinal dimension of the amplitude is much grea te r  than the 
t r a n s v e r s e ,  we can speak of a tendency toward the breaking-up of the pulse into individual bunches ("multi- 
focus s t ruc ture"  [8]). The evolution of each such pulse takes place according to the following scheme:  The 
focus is split  by cons t r ic t ion  into two par t s ;  the leading par t  moves forward  along the pulse, while the r e a r  
pa r t  moves in the opposite d i rec t ion (focuses A and B, Fig. 3, v = 0.014). The focus moving ahead undergoes 
the same evolution as the initial focus. In the developed stage of the p rocess ,  oscil lations of approximately 
identical amplitude a re  formed on the profi le  of the pulse (see Fig. 3). At the leading front, new maxima are 
formed continuously, running backward along the profi le of the pulse and vanishing in the tail part .  

With an inc rease  in the energy of the pulse I, the dimensions of oscil lat ions decrease ,  their  number 
increases .  This c i r cums tance  consti tutes an obstacle to the attainment of la rge  values of Umax. With small  
values of [ ~1 - 3 I c r ,  a f ter  attaining a maximal  amplitude, the pulse spreads  out without the formation of os -  
cillations. 

To demons t ra te  convincingly that it is p rec i se ly  the energy of the pulse which mainly determines  the 
dynamics of the p rocess  of se l f - focusing,  the pa r ame te r s  r 0, a,  and v were  var ied over  a wide range,  but in 
such a way that the value of the ra t io  I / I c r  would not change. It was found that, with an accuracy  of ~5%, the 
maximal ly  attainable amplitude of the pulse under these c i rcumstances  does not change~ The length of the self -  
focusing r i ses  considerably  with a r i s e  in the t r a n s v e r s e  dimension of the initial pulse. 

Oscillations of the t empera tu re  w e r e  observed  in the calculation, but they were  not great.  

The sy s t em (1.6) was considered numer ica l ly  and for g ~ 0, i .e. ,  taking account of thermal  conductivity. 
The effect of the thermal  conductivity r i ses  with a r i se  in the energy of the pulse. Figure  4 gives axial p ro -  
flies of the t empera tu re  for different values of the pa r ame te r s  a and ~ for t = 8 [1) ~ = 4, p = 0; 2) a = - 1 ,  
tt = 0; 3) a = 4, ~ = 0; v = 0.014]. 

We note that oscil lat ions of the field also a r i se  with s t r ic t ive  and Ker r  mechanisms of the sel f - focusing 
of the pulses [7]. 

3 .  S u p e r s o n i c  S e l f - F o c u s i n g  

If the development t ime of se l f - focusing •f is less  than the t ime of the hydrodynamic scat ter ing of the 
substance ~s (or is comparable  with it), it is neces sa ry  to consider  the total problem,  i.e.,  the sys tem (1.5). 
In the l imiting case  Tf << T s (supersonic self-focusing),  inthe last  of these equations the t e r m  c~A• can be 
dropped. 

In dimensioidess  var iables ,  s y s t e m  (1.5) assumes the fo rm 

i (u t i"  VlUz) 4- A• -- (iv + ~p)u -" O, (3.1) 
Oft - -  ~A.o ~= xA• S t =  2vlul ~', 
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w h e r e  u is the  ampl i tude  of  a pulse ;  p and S a re ,  r e s p e c t i v e l y ,  the p e r t u r b a t i o n s  of  the dens i ty  and the  en t ropy;  
v = k2a2al/eo;/~ = 4c~k2a2/v~r ;  ~ = 2 k a 2 / l .  The values  of r ,  z,  t,  u,  p, and S a r e  m e a s u r e d  in the  units  a, l, 
2ka2/V~r ,  (27rPoToc4/aoe2k4a48p/aS)~ /~ ,  %/k~a2e2,  c 2 / ( 4 k 4 a C e 2 8 p / S S ) ,  r e spec t i ve ly .  The f a c t o r s  ~ and ~ a r e  
in t roduced ,  as  be fo r e ,  for  conven ience  in ca lcu la l [ons  by the r e p l a c e m e n t  u - -  (a>r p - -  ap, S - -~S .  

Let  us c o n s i d e r  the  case/~ =0. F o r  suf f ic ien t ly  long pu l ses  (or bunches) ,  it c a n  be a s s u m e d  that  ~ = 0. 
Then  {3.1) admi t s  of  an  a p p r o x i m a t e  s e l f - s i m i l a r  s t a t emen t :  

t V (r/(t o - -  t)3i2), 
U ( t o  _ _  t ) 3 / 2  

t Q(r / ( t  ~ _ t)3i2) ' p = R ( r / ( t  o - -  t)al~-), S = ( t o -  t)'------T 

which  can  be d e m o n s t r a t e d  d i r ec t ly .  It can  be s e e n  that ,  for  long pu l se s ,  a f te r  a f ini te  t ime  t0, a s i ngu la r i t y  
(collapse) a r i s e s  in the  solut ion.  

F o r  the  inves t iga t ion  of the s e l f - f o c u s i n g  of pu lses  of f ini te  length,  we go o v e r  to " a c c o m p a n y i n g "  c o -  
o rd ina tes  t = ~ - z / ~  and z = z ' ;  we in t roduce  u = W e x p  (-~.z/7/) ,  a f t e r  which  we shal l  s eek  the so lu t ion  in the 
f o r m  (2.4). 

In the  r eg ion  r << r0, fo r  f we  then  obta in  the  equat ion 

~ ' ,~ 4 §  t ~,(z')d~" 4/ ('r~ i i r~p (z', z~ = 0. (3.2) 

F r o m  (3.2) it fol lows tha t  s e l f - f o c u s i n g  is pos s ib l e  if the  l a s t  t e r m  in this  equat ion  exceeds  the  d i f f r ac t ion  
t e r m  4 / f4r~. F r o m  this  the  condi t ion  fo r  s e l f - f o c u s i n g  has the f o r m  

I-  < r ,.~:oT, 
w h e r e  72 and 72 a r e  the  c o r r e s p o n d i n g  a v e r a g e d  va lues .  

Since f(~ = 0) = 1, then  the  c r i t e r i o n  for  s e l f - f o c u s i n g  can  be w r i t t e n  in the f o r m  

I > [cr = r~iT 2~v• (3.3) 

w h e r e  I : ~r~T has the  s e n s e  of  the ene rgy  of a pulse.  

The  p ro f i l e  of the  pulse  en t e r s  expl ic i t ly  into the  eva lua t ion  (3.3), s ince  r0/~- is the r a t io  of the c h a r a c -  
t e r i s t i c  t r a n s v e r s e  and longi tudinal  d imens ions .  

Equat ion  (3.2) is the  equat ion of mo t ion  of a l i nea r  o sc i l l a to r ,  its " equ i l ib r ium point" f0 is d e t e r m i n e d  by 
the  condi t ion  fzz = 0, i .e . ,  

9 ' 6 
(l,'s"t)~ = 6~v• [), ' / ,  (3.4) 

In the simplest case of a pulse of rectangular forn~ 

f~:o=c~ 0<~<~, 
, l 'o(D--  io, ~ < o ,  ~>.~  
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we can find the explicit solution of Eq. (3.4): 

f = ~p0(~v• ~)3,i.~ 

(compare with the s e l f - s imi l a r  solution for long pulses). It follows f rom this that the change in the amplitude 
and t r a n s v e r s e  c ros s  sec t ion of a pulse should have an explosive cha rac te r  as ~ ~ $0, i .e. ,  with an approach 
to the tail par t  of the pulse. The quantity ~0 has the sense  of the coordinate of collapse. The extremal  values 
of the amplitude and radius of a pulse of length r Can be evaluated in the following manner:  

lu!,,,:_~'--" *oq~0- T)'~:, rmi,~"-' ro(~o-- T)U '>. 

Let us evaluate the cha rac te r i s t i c  d imension of the oscillations of the value of f. Setting f ~ f0 + 5f, and 
assuming that 5f << 1, 5f ~ exp ( i z /k ) ,  f rom (3.2) for $ ~ ~0 we obtain 

i . 2 2 ~  
;~. ~ ~ 7oro,i, 

i.e.,  the minimal  dimension of the osci l lat ions 

l)3qr2?IIcr. 

For  pulses of nonrectangular  form,  the qualitative picture,  i . e . ,  the explosive cha rac te r  of the self -  
focusing, should be retained. 

If~t ~ 0, it is essent ia l  to take account of the hydrodynamic scat ter ing.  As follows f rom the se l f - s imi l a r  
solution, as ~ ~ 0  the t e rmt tA•  r i se s  as (~0 _ ~)-6, while, at the same  t ime,  Ptt ~ (~0 - ~)-s. 

We give the resu l t s  of a numerica l  investigation of sy s t em (3.2). Pulses  of Gaussian fo rm were  con-  

s idered:  

u ( r ,  z = 0, t ) =  A exp(--  r'lr~o - -  t2t~2), 

falling on the boundary z = 0 with the initial conditions 

p(r, z, t = 0 )  =pt ( r ,  z, t = O) = S(r,  z, t = O) = 0 ,  

u ( r ,  z, t = O) = 0,| exp (- r'/r~ - -  z2 i i~q2 ) .  

The t ime is reckoned f rom the moment  when the initial and boundary conditions a re  in agreement .  

The behavior  of long pulses r = ~ is c lose  to the predic ted s e l f - s imi l a r  law, as can be seen f rom Fig. 5. 
Se l f - s imi la r  conditions a re  natural ly attained in a t ime much less  than the absorption t ime of a pulse 1 / v ,  
i .e. ,  for ~vn >1. 

With the cons idera t ion  of the total sy s t em for  finite pulses ,  the pa r ame te r  a was varied.  With small  
values of a,  the amplitude, af ter  attaining a maximum, dec reases  and the pulse spreads  out. With a r i s e  in 
o, oscil lat ions appear in the tail par t  of the pulse. With sufficiently la rge  values of or, in the developed stage 
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of self-focusing, the pulse is, so to speak, divided into two parts: a tail part, with a strongly oscillating am- 
plitude of the intensity of the field, and a leading part, with weak oscillations. The dimension of the oscillations 
decreases sharply with an approach to the tail part of the pulse, as can be seen in Fig. 6, which shows the 
field at the axis of the pulse at different moments of time. 

With a rise in ~, i.e., with a decrease in the development time of self-focusing, the geometric dimen- 
sions of the oscillations decrease sharply, which is a consequence of the explosive character of the process. 

Figure 7 gives the distributions of the density at the axis of a pulse at two moments of time. The results 
shown in Figs. 6 and 7 were obtained with the parameters A = 1, ~-=2, r 0 =3, a = 50, v =0.01, ~4 =2, and 
~ = 0.5. 

A sharp  r i se  in the maximally attainable amplitude s ta r t s  f rom a = 50. The s t rongly oscil lating par t  of 
the pulse moves weakly ahead; there  is a capture of the field by the well of the density,  which has a s trongly 
oscil lat ing profile. The oscil lat ions in the profile of S are  weakly expressed.  In Fig. 8, which gives the spatial 
dis tr ibut ion of the field with these same  pa rame te r s  at the moment t = 4.8, there  can also be c lear ly  seen the 
separa t ion of the pulse into parts  with s t rong and weak oscillations.  The lines in Fig. 8 correspond to the 
levels !u J= 0.1, 0.3, 0.5, 0.7, 1, 1.5, and 2. 
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